Finite element approximations in a non-Lipschitz domain: Part II

نویسندگان

  • Gabriel Acosta
  • María G. Armentano
چکیده

In a paper by R. Durán, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R2, and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L2 norm obtaining similar results by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ωh verifies Ω ⊂ Ωh, in the above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Partial Expansion of a Lipschitz Domain and Some Applications

We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of lo...

متن کامل

Finite Element Approximations in a NonLipschitz Domain

In this paper we analyze the approximation by standard piecewise linear finite elements of a non homogeneous Neumann problem in a cuspidal domain. Since the domain is not Lipschitz, many of the results on Sobolev spaces which are fundamental in the usual error analysis do not apply. Therefore, we need to work with weighted Sobolev spaces and to develop some new theorems on traces and extensions...

متن کامل

Modeling Static Bruising in Apple Fruits: A Comparative Study, Part II: Finite Element Approach

ABSTRACT- Mechanical damage degrades fruit quality in the chain from production to the consumption. Damage is due to static, impact and vibration loads during processes such as harvesting, transportation, sorting and bulk storage. In the present study finite element (FE) models were used to simulate the process of static bruising for apple fruits by contact of the fruit with a hard surface. Thr...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2011